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Abstract. A recent surge of research has focused on counterfactual explanations 
as a promising solution to the eXplainable AI (XAI) problem. Over 100 counter-
factual XAI methods have been proposed, many emphasising the key role of fea-
tures that are “important” or “causal” or “actionable” in making explanations 
comprehensible to human users. However, these proposals rest on intuition rather 
than psychological evidence. Indeed, recent psychological evidence [22] shows 
that it is abstract feature-types that impact people’s understanding of explana-
tions; categorical features better support people’s learning of an AI model’s pre-
dictions than continuous features. This paper proposes a more psychologically-
valid counterfactual method, one extending case-based techniques with addi-
tional functionality to transform feature-differences into categorical versions of 
themselves. This enhanced case-based counterfactual method, still generates 
good counterfactuals relative to baseline methods on coverage and distances met-
rics. This is the first counterfactual method specifically designed to meet identi-
fied psychological requirements of end-users, rather than merely reflecting the 
intuitions of algorithm designers. 
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1. Introduction 

In recent years, a significant effort has been made to develop methods that can explain 
to people why/how an automated decision was made by some black-box AI system (see 
[1–3]). Indeed, given the requirements of GDPR to provide such explanations when 
automated decisions are made without human intervention, there is an added urgency 
to solve this eXplainable AI (XAI) problem [3,4]. Many XAI strategies proposed in 
recent years have echoed long-standing work in case-based reasoning (CBR) where the 
provision of explanations for model predictions has always been a motivating concern 
(see e.g., [5–7]). Hence, case-based explanations proposed over two decades ago have 
been revisited and extended to be applied to deep learning (see e.g., [8–10]). Similarly, 
a-fortori explanations proposed in CBR [11,12] have been revived as semi-factuals to 
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explain deep learners [13] and Nearest Unlike Neighbours (NUNs; [11,14]), have been 
re-cast as counterfactual explanations realised in 100+ different algorithms in the liter-
ature [15]. This last explanation strategy is the focus for the current paper, as it has 
become one of the most researched post-hoc solutions to the XAI problem.    
      The classic example of a counterfactual explanation is one for an automated bank-
ing application where, on foot of being refused a loan, the customer asks for an expla-
nation and is told “if you asked for a lower loan of $30,000 over a shorter term of two 
years, you would have been granted the loan”. Importantly, the counterfactual tells the 
end-user about what feature changes will result in a different decision outcome, giving 
the user some insight into how they might reverse the outcome of an automated decision 
(so-called algorithmic recourse [16]). Counterfactual explanations have attracted a lot 
of attention in XAI because they appear to be psychologically comprehensible [17], 
GDPR-compliant [18], and invite a wide variety of computational solutions (see 
[15,16]). One family of solutions adopts a case-based approach, where NUNs are used 
in a variety of different ways to explain some current target (query) case [14,19–21].   
      In this paper, we extend the case-based approach of [20] to make it more psycho-
logically-valid by modifying the feature-types its uses in its explanations. The next sec-
tion places this work in the context of recent relevant research. Recent psychological 
research shows that, where possible, categorical features should be preferred as the ba-
sis for the generated counterfactuals used in explanations [22]. In section 3 we perform 
a computational study to determine the “natural” occurrence of counterfactuals with 
categorical feature-differences in several representative datasets; this study shows they 
are rare and motivates our method that transforms all continuous feature-values into 
categorical ones (see section 4). Then in section 5, we report a second study to test these 
feature-transforming methods using an extension of case-based counterfactual genera-
tion methods on representative datasets; we assess if there is any decrement in the qual-
ity of counterfactuals produced under these transformations. In section 6, we conclude 
by discussing the implications of these results for counterfactuals in XAI. 

2. Background: Computation & Psychology of 
Counterfactuals 

Though it is not always recognised in the AI literature, the computation of counterfac-
tuals has been with us for some time. In earlier guises, it was cast as finding NUNs 
[23,24] or inverse classifications [25]. For instance, in a binary classification problem 
we could have two cases that are very close to one another, but one feature change flips 
the class of the cases; in the loan domain, a reduction in the value of the loan-amount 
feature, might change the decision from “refuse” to “grant”. Depending on the dataset, 
these two instances could be NUNs, the closest pair of instances in the dataset where 
specific feature-changes modify the class predicted. Several early papers on NUNs con-
sidered their use in the context of explanation for domains using tabular [11,23] and 
textual data [14], emphasising the use of instances in the existing dataset. 
      However, recently, a very different optimisation approach has been proposed that 
uses similarity constraints to generate synthetic instances that balance similarity to the 
query against distance to the decision boundary. Wachter et al. [18] propose that coun-
terfactuals can be computed using the loss function, L: 

				𝐿(𝑥, 	𝑥!, 𝑦!, 𝜆) = 	𝜆(𝑓(𝑥!) − 𝑦!)" + 𝑑(𝑥, 𝑥!)  (1) 
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𝑎𝑟𝑔min
#!

max
$
𝐿(𝑥, 𝑥!, 𝑦!, 𝜆)    (2) 

where x is the vector for the query case and x' is the counterfactual vector, with y' being 
the desired (flipped) prediction from f (..) the trained model, where λ	acts as the balanc-
ing weight. In formula (2), λ	balances the closeness of the counterfactual to the query 
case against making minimal changes to the query case while delivering a prediction 
change, using the ℓ1 norm weighted by median absolute deviation. In implementations, 
this method generates a space of feature perturbations for the original query and then 
uses gradient descent to settle on a minimally-perturbed (aka the best) counterfactual. 
This method tends to generate low-sparsity counterfactuals, that is, counterfactuals with 
few feature differences; a property seen as attractive as it allows people to better under-
stand them1 (e.g., Table 1 shows “good” and “bad” counterfactuals for explaining a 
blood-alcohol-level prediction based on sparsity). Unfortunately, this original method 
has been shown to have several limitations. First, it cannot handle categorical features, 
as it only addresses features with continuous values. Second, it sometimes generates 
invalid, out-of-distribution data-points and, therefore, invalid explanations in the do-
main [26]. Many subsequent papers have aimed to rectify these deficits. For example, 
DiCE [27] handles categorical features using one-hot encoding and adds constraints for 
diversity, while other models supplement the constraints to be more sensitive to the 
data [28,29]. So, there is now a whole family of these optimisation methods that claim 
to foster better computation of counterfactuals. 
Table 1. A query case paired with a “Good”, “Better” and “Bad” Counterfactual from the Blood 
Alcohol Content (BAC) case-base (the feature-differences shown in bold-italics). 

Features Query Case “Bad” 
Counterfactual 

“Good”  
Counterfactual 

“Better” 
Counterfactual 

Weight 90 kg 90 kg 100 kg 90 kg 
Duration 1 hr 3 hrs 1.5 hr 1 hr 
Gender Female Male Female Male 
Stomach Empty Full Empty Full 
Units 5 4 5 5 
BAC Level Over Under Under Under 

    One of the persistent themes in this literature has been around the differential im-
portance of features. In the psychological literature on counterfactual thinking, Nobel 
laureate Daniel Kahneman noted that only some features are “mutable” [30]; some fea-
tures cannot be changed in creating a counterfactual (e.g., age is not a feature that can 
change to improve one’s loan chances). So, counterfactual explanations need to change 
“plausible” features, namely ones that are “actionable” (i.e., that the user can action; 
[31–33]), “causally important” (i.e., that play a key role; [34]) or “predictively im-
portant” [35,36]. Overall, this concern with features tries to ensure that these methods 
produce counterfactual explanations that make sense to people, that people can act on 
and that increase their understanding of the domain (e.g., how the model makes its de-
cisions). However, there are many issues around the identification and use of the “right” 

 
1    Keane and Smyth [19] argued that, for tabular data, counterfactuals should be sparse; no more 

than 2 feature-differences, to allow people to understand them. Recent user studies show that 
people prefer counterfactuals with 2-3 feature differences [45]. 
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features. Firstly, these featural proposals often end in ad-hoc solutions, such as end-
users interacting to mark features as important or to define ranges on feature-values 
[27]. Secondly, for causal importance, methods assume causal models that are not often 
or always available. Thirdly, what constitutes the “right” feature seems to be very con-
text-sensitive; for example, if I earn $300k a year, then increasing income by $5k may 
be actionable, but if I earn $30k a year, earning an additional $5k may be impossible. 
Perhaps one of the main attractions of case-based approaches is that they exploit im-
plicit dependencies in the data and accordingly, by definition, rely on plausible/muta-
ble/important features and avoid producing out-of-distribution counterfactuals. 
      Furthermore, as we shall see in the next section, this AI literature on feature im-
portance has overlooked one key aspect of features shown to be psychologically criti-
cal. Recent user studies have revealed that abstract feature-types – categorical versus 
continuous features – are understood very differently by human users [22]. In the next 
sub-section, we consider related work on the psychology of counterfactuals in XAI and 
their implications for models of counterfactual generation. 

2.1 User Studies of Counterfactual XAI: Mixed Results 

Although the AI literature on counterfactual methods has exploded in the last few years, 
user studies examining how people understand and use counterfactuals have lagged 
considerably; indeed, the user studies that have been done tend to be too general, report 
mixed results, or both. Keane et al. [15] report that of 100+ distinct counterfactual 
methods reported in the XAI literature (of which ~5 are case-based methods) only 
~20% report any user tests; even fewer papers test specific aspects of specific tech-
niques (~7%). Many of these studies report quite general findings, showing that coun-
terfactuals broadly improve people’s responding in some way [21,37,38]. More focused 
user studies tend to report mixed results on people’s performance with counterfactual 
explanations. Van der Waa et al. [39] tested people’s performance with a simulated 
blood-sugar-prediction app using either contrastive-rule or example-based explanations 
and found that neither strategy did better than no-explanation controls. Lage et al. [40] 
found when people were given counterfactual tasks, in which users were asked if a 
system’s recommendation would change given a perturbation of some input feature, 
they reported greater difficulty; also longer response times and lower accuracy in pre-
diction tasks were recorded. Taken together, these studies present a confusing picture, 
in which counterfactuals seem to sometimes help and other times hinder. They also 
suggest a focus on how people really understand the features in counterfactual expla-
nations, to uncover when and how they really work, psychologically. 
      Though many counterfactual methods have emphasised featural aspects, none of 
these papers user-test their proposals. To the best of our knowledge only two papers 
have specifically user-tested feature-types in counterfactual methods [22,41]. Kirfel 
and Liefgreen [41] found that people’s perceptions of the quality and comprehensibility 
of explanations was affected by whether they involved actionable and mutable features, 
as opposed to immutable ones. However, they also pointed out that the actionable/mu-
taibility distinctions made by AI researchers were not as clear-cut for laypeople. This 
raises the question about whether there are more fundamental feature-categories that 
could impact people understanding. Indeed, longstanding evidence from human rea-
soning suggests that people do not spontaneously change continuous variables (e.g., the 
speed or timing of vehicles involved in a road accident) when generating counterfactu-
als [42]. To address this issue, Warren et al. [22] examined the role of abstract feature-
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types – categorical or continuous – in people’s understanding of counterfactual expla-
nations for a black-box model’s predictions. They examined the effects of different 
counterfactual (and causal) explanations on people’s understanding of a blood-alcohol-
content (BAC) domain. They presented people with a simulated AI model that predicts 
if someone is over/under the legal alcohol limit for driving, based on five features: 
weight, duration of drinking, gender, stomach-fullness, and number of units drunk. In 
the training phase of the experiment, people were presented with query cases with dif-
ferent values for these features and asked to predict the outcome as under/over the BAC 
limit. After responding, they were shown the model’s prediction along with a counter-
factual explanation (e.g., see the “good counterfactual” in Table 1). In the training 
phase, they saw 40 such cases with equally-balanced cases involving counterfactuals 
for the five features (i.e., 8 cases for each feature). Then, in the testing phase, they 
received 40 new cases and were asked to predict the outcome while focusing on a spe-
cific feature (8 instances per feature), without receiving explanations or feedback, to 
determine how accurate their predictions were. This experimental paradigm tests a crit-
ical aspect of explanation use, namely, if experience with the model’s predictions com-
bined with explanations improve people’s understanding of the domain, as measured 
by accuracy in the test phase.  

Fig. 1. Mean accuracy for three conditions (counterfactual, causal and control) by each feature 
in the (A) training and (B) testing phases of Warren et al. [22] (error bars represent standard error 
of the mean; dashed line represents chance accuracy). 

    Overall, the results, shown in Figure 1, show an effect of explanation, where people 
given counterfactual explanations were more accurate than no-explanation controls. 
However, the results also showed an independent effect of feature, that also interacted 
with phase; in the testing phase, accuracy for cases using categorical features improved, 
whereas those using continuous features did not; note the increase in Figure 1(B) rela-
tive to Figure 1(A), for gender and stomach-fullness. Indeed, this feature-type factor 
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accounts for almost all the improvement in accuracy seen between the experiment’s 
training and test phases. These results show that improvements in accuracy were solely 
due to the presence of categorical features over continuous ones. So, counterfactuals 
with categorical-differences should be “better” (see Table 1). This finding motivates 
the current work, to extend counterfactual methods to take feature-type into account. 

3. Study 1: Plotting Counterfactuals That Have Categoricals 

Given the importance of categorically-based explanations, in this study we examined a 
number of UCI datasets [43] – based on (i) prior use in testing counterfactual methods, 
(ii) their use of categorical features – to determine their potential to yield native coun-
terfactuals (i.e., existing pairs of counterfactually-related instances in the dataset that 
can be used to generate synthetic counterfactuals) that rely on categorical feature-dif-
ferences (as opposed to continuous ones). Seven datasets were selected: the blood-al-
cohol-content, contraceptive-choice, cleveland-heart, horse-colic, credit, german 
credit, and thyroid datasets. Note, datasets containing categorical features may be 
relatively rare: of the 622 UCI datasets publicly available as of May 2022, 38 (.06%) 
contain only categorical features, while 55 (.09%), contain mixed features (some of 
which contain only a single categorical feature, such as the abalone, diabetes datasets). 
We used the case-based counterfactual method, CB2-CF (see section 4), to compute all 
pairs of cases either side of a decision boundary (i.e., native counterfactuals) noting the 
number of feature differences in each, and if they had at least one categorical feature. 
This method uses a tolerance to identify feature-differences so small differences [e.g., 
±20% of 1 standard deviation (SD)] in continuous features are treated as essentially 
identical; varying this tolerance (≤1 SD) did not materially change the results. 

Table 2. Study 1 Results: Frequencies of native categorical counterfactuals (≥1 categorical fea-
ture-difference) over 7 datasets, for 1-5 feature-differences, as a % of potential counterfactuals. 

 
Dataset 

N 
cases 

N 
feats 

N 
cat. 
feat. 

1-diff 
CFs 

(% tot.) 

2-diff 
CFs 

(% tot.) 

3-diff 
CFs 

(% tot.) 

4-diff 
CFs 

(% tot.) 

5-diff 
CFs 

(% tot.) 
Blood 
Alcohol. 4748 5 2 19  

(0.4%) 
1302 

(27.4%) 
4574 

(96.3%) 
4736 

(99.8%) 
0  

(0%) 

Contracept. 1425 9 7 236 
(16.6%) 

1050 
(73.7%) 

1345 
(94.5%) 

1377 
(96.7%) 

1379 
(96.8%) 

Cleveland 
Heart 303 13 7 0  

(0%) 
0  

(0%) 
0  

(0%) 
8  

(2.65%) 
93 

(30.8%) 

Colic 300 26 19 1 
(0.33%) 

0  
(0%) 

0  
(0%) 

0  
(0%) 

0  
(0%) 

Credit 690 15 9 0  
(0%) 

0  
(0%) 

0  
(0%) 

0  
(0%) 

0  
(0%) 

German 
Credit 1000 20 13 0  

(0%) 
0  

(0%) 
3  

(0.3%) 
20 

(2.0%) 
108 

(10.8%) 

Thyroid 2753 28 22 0 
( 0%) 

0  
(0%) 

0  
(0%) 

0  
(0%) 

69 
(2.5%) 
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3.1 Results & Discussion 

Table 2 shows frequencies of native counterfactuals involving at least one categorical 
feature-difference (and their percentage in the total set of counterfactuals). Note, this is 
a low bar for categorical counterfactuals, as it admits one with 5 feature-differences 
where, perhaps, only one of those feature-differences were categorical.  Even with this 
low bar, counterfactuals based on categorical features are rare. For 5 datasets, none of 
the good counterfactuals (i.e., those with 1-3 feature differences) involved categorical 
features. Of the 2 datasets – blood-alcohol-content and contraceptive – that yield more 
categorical counterfactuals, there are still very few 1-feature-difference counterfactuals 
that are categorical (respectively ~0.4% and ~16.6%). We found no relationship be-
tween the number of categorical features in a dataset and its propensity to generate 
categorically-based counterfactuals; for instance, the contraceptive dataset has 7/9 cat-
egorical features (77%) whereas the thyroid dataset has 22/28 categorical features 
(78%) but they both show very different results. 
      Clearly the occurrence of categorical features in counterfactuals must depend on 
the underlying domain theory, on the presence/absence of dependencies between cate-
gorical and continuous variables in the domain. For instance, in the BAC domain gen-
der has a big impact on outcomes; females have different metabolic rates to males and 
this factor impacts other variables in the BAC formula. From these results, it is hard to 
escape the conclusion that categorically-based, counterfactual explanations do not nat-
urally occur in many datasets. We also note that, unlike those evaluated here, a signifi-
cant proportion of the datasets widely used in the machine learning literature (e.g., see 
UCI repository [43]) do not contain any categorical features whatsoever, and hence will 
not yield native categorical-counterfactuals. So, to present such explanations to end-
users, we will need to transform feature-differences involving continuous features into 
categorical representations of themselves. In the next section, we consider how an ex-
isting instance-based counterfactual method can be re-designed to do such transfor-
mations in a post-processing step, before an explanation is presented to users. 

4. Transforming Case-Based Counterfactuals, Categorically 

In AI, NUNs have been considered for some time (see [24] for a review), though the 
idea of using a NUN as a counterfactual explanation is more recent [11,21]. However, 
NUNs on their own are not a general solution to counterfactual explanation; even if 
available, they may be too distant from the query to provide a good explanation. Hence, 
most current techniques try to generate synthetic counterfactuals that are close to the 
query and within-distribution [19,20,27]. Case-based counterfactual techniques tend to 
use NUNs as templates for generating synthetic counterfactuals either by selecting spe-
cific features from the NUN in some constrained way [19,20] or by perturbing the NUN 
towards the query [14,36]. In the next subsection, we quickly describe the case-based 
counterfactual method used in the current experiments, before describing two algorith-
mic extensions to it, that perform categorical transformations to explanatory cases. 
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4.1 Case-Based Counterfactual Methods: CB1-CF and CB2-CF 

Keane and Smyth [19] proposed a case-based counterfactual method (CB1-CF here) 
designed to generate plausible and informative counterfactual explanations for any pre-
sented query case. Unlike optimisation methods, CB1-CF uses historical counterfac-
tual-pairs in the dataset – so-called native counterfactuals – as templates for building 
new, synthetic counterfactual cases for the query case. As Figure 2 shows, to explain 
the outcome of p, CB1-CF identifies a nearby pair of cases, cf(x, x’), where x has the 
same class as p and x’ is a good counterfactual for x; x and x’ differ by a small number 
of features and these features are adjusted in p to obtain a new explanation case, p’, that 
is counterfactually related to p (see [19] for details on how these difference-features are 
adjusted). There may be other counterfactual pairs in the case-base, such as cf(q, q’), 
but CB1-CF only uses the closest to build a single explanatory counterfactual.  

Fig. 2. An illustration of (a) a two-class case-base with 2 native counterfactuals [i.e., (x, x’) and 
(q, q’)], where one (x, x’) is the nearest-neighbour native to the query, p, and x’ is used to create 
the explanatory counterfactual case, p’; (b) how a synthetic, counterfactual case, p', is generated 
from the values in the match-features of p and the difference-features of x’. 

     Recently, Smyth and Keane [20] generalised CB1-CF to go beyond just considering 
a single, native counterfactual (k=1); this new method (which we refer to as CB2-CF)  
can arbitrarily vary the number of natives considered (any k >1). The authors show that 
CB2-CF generates better counterfactual cases (i.e., ones closer to the query) with better 
coverage (i.e., it can find good counterfactuals for most queries) for k=10-30 in repre-
sentative datasets. In the current tests, we use a simplified version of CB2-CF to test 
for the effects of categorical transformations on the generation of explanations2. Of 
course, CB2-CF does not consider whether categorical/continuous features are used in 
the counterfactual. So, in the next section, we extend CB2-CF, using variants that trans-
form feature-difference values to be categorical (see section 5 for tests). 

 
2   As well as considering multiple natives, CB2-CF also considers nearest-like-neighbours of the 

native’s x’ (e.g., the three closest, same-class datapoints to x’) to expand on the variations of 
natives considered. This second step in not implemented in our version of CB2-CF. 
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CAT-CFglobal (q, CB): CAT-CFLocal (q, CB): 
1. cfs, dists ⟵ FindCFsk(q, CB) 
2. for each cf ∈ cfs: 
3.   for each fi ∈ DiffFeatures(q, cf): 
4.       cf(fi) ⟵ BinaryBin(CB, fi, cf(fi)) 
5.       if cf(fi) = q(fi) 
6.          cf ⟵ conflicting  
7. valid_cfs ⟵ remove conflicting CFs 
8. valid_cfs ⟵ Sort(valid_cfs, 

      by=[‘sparsity', ‘dist’]) 
9.  Return valid_cfs  

1. cfs, dists ⟵ FindCFsk(q, CB) 
2. for each cf ∈ cfs: 
3.   for each fi ∈ DiffFeatures(q, cf): 
4.     if cf(fi)<q(fi) 
5.       cf(fi) ⟵ lower 
6.     else: 
7.       cf(fi) ⟵ higher 
8.       cf(fi) ⟵ Direction(q, cf, fi) 
9. valid_cfs ⟵ Sort(valid_cfs, 
             by=[‘ sparsity', ‘direction'] 
10.  Return valid_cfs 

Algorithms: Two methods for transforming feature differences in counterfactuals. Notes: 
BinaryBin(CB, f, v) converts a feature value f(v) into a binary categorical value v’ based on the 
binning of features values for f in CB. This process can be done once for a given CB so that 
BinaryBin(CB, f, v) can be as a simple lookup. 

4.2 Counterfactuals With Categorical Transforms #1: Global Binning 

Study 1 showed that many datasets produce little or no categorical counterfactuals or 
only produce them in counterfactuals with poor sparsity (i.e., >2 feature differences). 
These findings led us to conclude that all continuous-type feature-differences in gener-
ated counterfactuals need to be transformed into categorical versions of themselves in 
the explanation-generation process (as in Table 3). Hence, we propose a post-processor 
that considers alternative counterfactual explanations for a given query, transforming 
them into categorical versions and, after some minimal checking, produces the best one 
as an explanation. Based on the psychological evidence [22], we apply binary transfor-
mations to continuous features; though should future work identify similar benefits of 
categorical features with more than two possible values, our approach can be adapted 
to reflect this. The first method we considered takes the dataset as is and performs a 
global binary binning on all the continuously-valued features. For instance, in the da-
taset the weight feature varies between 40kg and 191kg with a median of 94kg; so, all 
values greater than the median are labelled as high-weight and all those equal-to-or-
below the median are labelled as low-weight (see Table 3). This binning step is com-
puted at the outset for the dataset. Using the CB2-CF method, for a given query k coun-
terfactual-candidates are produced (assume k=20) and the difference-feature-values 
found in these candidates are all transformed using the binning-labels (obviously cate-
gorical-feature-differences are left as is). Note, after the categorical-transformation, 
some of these candidates will need to be removed because they are conflicting; that is, 
the continuous feature-values in difference-pairs are transformed into the “same” cate-
gorical feature (e.g., two weights of 100kg and 115kg which were a difference both 
become labelled as high-weight). This means that, after the categorical transformation, 
the original counterfactual has not been preserved appropriately; therefore, these con-
flicting candidates are removed. Indeed, as we shall see, this step is probably the main 
source of performance decrements for this method. See Algorithms for the steps in this 
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global binning method, called CAT-CBRglobal. After the conflicting counterfactuals 
have been removed, it sorts the candidates by sparsity (lowest to highest) and then by 
distance (i.e., ℓ2 norm on original untransformed, values of the counterfactual; lowest 
to highest) choosing the one with the best sparsity and distance score. 
Table 3. A query case with its paired explanatory case, before and after it is transformed using 
the Global Categorical (CF-CATglobal) and Local Categorical (CF-CATlocal) methods. 

Features Query  
Case 

Original 
Explanatory 

Counterfactual 

Global 
Categorical 

Transformation 

Local 
Categorical 

Transformation 
Weight 90 kg 100 kg high higher 
Duration 1 hr 1.5 hrs high higher 
Gender Female Female Female Female 
Stomach Empty Empty Empty Empty 
Units 5 5 5 5 
BAC Level Over Under Under Under 

4.3 Counterfactuals With Categorical Transforms #2: Local Direction 

On the face of it, the CAT-CFglobal method looks like a plausible solution to the problem 
of transforming continuous features into categorical ones for psychologically compre-
hensible counterfactual explanations. However, we have also seen that it can produce 
conflicts when a continuous feature-difference is not preserved after categorical trans-
formation, which may limit its potential to produce counterfactuals for certain query 
cases, depending on how a given feature’s values are distributed. Hence, we developed 
and tested a more local method, called CAT-CFlocal. This method, as its name suggests, 
works locally within the candidate counterfactual by re-labelling the continuous values 
in c(p, p’) as being higher/lower, depending on the direction of difference. For instance, 
if the p query had a value of 110kg and the candidate p’ counterfactual instance has a 
value of 120kg, then the former would be labelled lower-weight and the latter higher-
weight (and vice versa if the weight values were reversed; see Table 3). This approach 
avoids the global binning of values (and conflicts that arise) using instead a more rela-
tive transformation; it tells the user that one feature was significantly higher/lower than 
the other and the direction of the difference that produced the counterfactual outcome. 
Arguably, this method is simpler and easier to compute, though it does give users more 
relativistic explanations (e.g., people will not know whether higher is high in some 
absolute sense, just that the value is high relative to the paired case). The method also 
prioritises counterfactuals with relative difference-features that are most representative 
of the set of potential counterfactuals, by assigning each candidate counterfactual a di-
rection-consistency score. For example, where there are 20 candidate counterfactuals 
for a given query case, a certain difference-feature may be relatively higher in 15 of 
these candidates and relatively lower in 5. The proportion of candidates with each rel-
ative categorical value for that feature is calculated (e.g., .75 for higher, .25 for lower), 
and the mean direction-consistency score for each candidate is obtained by averaging 
this score for all difference-features. The candidates are ordered in terms of (i) sparsity 
(lowest to highest), and then by (ii) direction (highest to lowest), selecting the one with 
the best sparsity and direction-consistency score. In the next section, we report our tests 
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of these two methods, implementing variants of the CB2-CF method to test each on 
those datasets that we saw to be most important in Study 1. 

5. Study 2: Evaluating CAT-CF Methods 

We evaluated the performance of the two methods described above using seven UCI 
datasets [43] and in comparison to two baseline techniques (from [20]): (i) CBRProximity 
selects the best candidate counterfactual using the ℓ2 distance between the query and 
counterfactual candidate; and (ii) CBRSparsity & Proximity prioritises sparsity between the 
query and counterfactual case before selecting the most proximal candidate. All meth-
ods were evaluated using a k-NN model for varying ks, but here we report the results 
for k=20, as different values of k yield similar results. 

5.1 Method: Data & Procedure 

The evaluation datasets vary in the number of features, classes, and overall size (see 
Table 2), but all contain some categorical features and are used in classification tasks. 
In order to evaluate the two CAT-CF approaches against baseline CBR methods, we 
focus on two metrics: (i) explanation competence or coverage, that is, the proportion of 
query cases for which at least one counterfactual case can be generated; and (ii) relative 
counterfactual distance, that is, the ratio of distance between a query case and its se-
lected counterfactual case, to the distance between the query case and explanation-case 
generated for the counterfactual (n.b., ℓ2 is a standard measure used to evaluate coun-
terfactual methods, with low distance seen as an indicator of better or more plausible 
explanations). For each dataset we used a tolerance of ±20% 1 SD for a given feature. 
Ten-fold cross-validation was used in evaluation, randomly selecting 10% of instances 
as query cases, and the remainder as the basis for the explanation cases. The means for 
each dataset across all 10 folds are reported here.  

Fig. 3. Study 2 Coverage results: The explanatory competence of CAT-CBRglobal-any compared to 

CAT-CBRglobal-all, for seven datasets. 
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To determine the impact of the removal of conflicting-candidates in CAT-CFGlobal, and 
its feasibility, we first compared a version of CAT-CFGlobal that requires all feature dif-
ferences be preserved following the categorical-binning step (CAT-CFGlobal-all) to one 
that relaxes this constraint to require that at least one feature difference is preserved 
(CAT-CFGlobal-any). Figure 3 shows the explanatory competence of these variants, in 
which CAT-CFGlobal-all performs poorly on all datasets relative to the CAT-CFGlobal-any 
(Mglobal-all≈39%; Mglobal-any≈80%; z=-7.01, p<.001), failing completely on several. 
Clearly, the former is too conservative, so we adopt CAT-CFGlobal-any in subsequent 
tests. Though this means the global method will not necessarily transform all continu-
ous feature-differences, a counterfactual explanation with one categorical difference-
feature and one continuous difference-feature still holds a distinct psychological ad-
vantage over an explanation in which both difference-features are continuous.  

Fig. 4. Study 2 Coverage Results: The explanatory competence of both categorical methods in 
comparison to two baseline methods, across 7 datasets. 

5.3 Results & Discussion: Counterfactual Distance 

Having shown the explanatory competence of the two proposed counterfactual meth-
ods, we now move to assessing their explanatory power. Relative counterfactual dis-
tance (RCF) is used as proxy measure for the quality of generated counterfactuals and 
is computed by dividing the distance of generated counterfactual pairs, by the baseline 
distance between native-counterfactuals in the dataset. If RCF is <1, the generated 
counterfactuals are closer to the query case than the mean baseline distance. RCF for 
each of the methods and datasets are shown in Figure 5. Analyses with t-tests showed 
that both baselines (RCFProximity≈.93; RCFSparsity & Proximity≈.96) performed better than 
CAT-CFGlobal (RCFglobal≈1.05), t(70)=4.17, p<.001; t(70)=3.33, p<.001 respectively. 
There was no significant difference between the mean RCF of the counterfactuals pro-
duced by CAT-CFGlobal and CAT-CFLocal (RCFlocal≈.99), t(70)=1.91, p=.058 (note that 
this metric only captures the distance between those query-counterfactual pairs that 
were successfully produced, so the poorer coverage of CAT-CFGlobal is not accounted 
for here). CAT-CFLocal does not score as well as CBR-Proximity, t(70)=2.54, p=.012, 
but is not significantly different to CBR-Sparsity & Proximity, t(70)=1.65, p=.09. This 
suggests that selecting the best counterfactual by prioritising direction-consistency does 
not sacrifice similarity any more than prioritising sparsity, which is widely accepted to 
be psychologically important.  



 13 

     Overall, from these results it is clear we can be confident about transforming features 
into more psychologically-acceptable variants using CAT-CFLocal; though, there is a 
slight hit on the distance measure, this decrement should be compensated for by the 
improved psychological comprehensibility of the explanations generated using this 
method. Depending on the task context, as well as the domain-knowledge and the goals 
of users, their requirements of an explanation are likely to vary [6, 44]. For example, in 
applications where the user aims to develop a general understanding of how features 
affect a system’s decision (e.g., auditing system fairness), explanations focused on 
categorical features are likely to be highly effective. They may also be appropriate 
where there are concerns regarding model extraction or breaches of sensitive personal 
data, where it may be desirable to avoid explicitly providing raw data points. Even 
where users require or request more precise information, the categorical explanations 
proposed here can be easily supplemented with reference to the original data; bearing 
in mind that developing a basic understanding of the features and how they contribute 
to a system’s decision is clearly a fundamental first step towards actionable recourse. 

Fig 5. Study 2 Distance Results: The counterfactual distance of good counterfactuals produced 
for 7 datasets, relative to baseline counterfactual distance (between query case and its NUN) 

6. Conclusions 

In recent years, the XAI literature has been replete with many counterfactual methods 
that claim to generate plausible explanations based on the “right” features [15] but with 
little or no psychological evidence to support the claims made. Recent studies have 
shown that people learn from counterfactuals involving categorical features rather than 
those using continuous features [22], which motivates the case-based, counterfactual 
method proposed here; it produces categorical counterfactuals by transforming contin-
uous features into categorical alternatives. We have tested two variants of this trans-
forming approach and found that CAT-CFLocal, which performs local transformations, 
works well on coverage and relative distance measures, compared to standard non-
transforming methods. This means we can retain the benefits of current methods but 
boost them psychologically with categorical transformations of their proposed expla-
nations. The main novelty of this work is that it is the first counterfactual method that 
has been specifically designed to meet identified psychological requirements of end-
users, rather than merely reflecting the intuitions of algorithm designers. 
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