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ABSTRACT
Recently, eXplainable AI (XAI) research has focused on the use of
counterfactual explanations to address interpretability, algorithmic
recourse, and bias in AI system decision-making. The proponents
of these algorithms claim they meet users’ requirements for coun-
terfactual explanations. For instance, many claim that the output
of their algorithms work as explanations because they prioritise
"plausible", "actionable" or "causally important" features in their
generated counterfactuals. However, very few of these claims have
been tested in controlled psychological studies, and we know very
little about which aspects of counterfactual explanations help users
to understand AI system decisions. Furthermore, we do not know
whether counterfactual explanations are an advance on more tradi-
tional causal explanations that have a much longer history in AI
(in explaining expert systems and decision trees). Accordingly, we
carried out two user studies to (i) test a fundamental distinction
in feature-types, between categorical and continuous features, and
(ii) compare the relative effectiveness of counterfactual and causal
explanations. The studies used a simulated, automated decision-
making app that determined safe driving limits after drinking alco-
hol, based on predicted blood alcohol content, and user responses
were measured objectively (users’ predictive accuracy) and subjec-
tively (users’ satisfaction and trust judgments). Study 1 (N=127)
showed that users understand explanations referring to categorical
features more readily than those referring to continuous features.
It also discovered a dissociation between objective and subjective
measures: counterfactual explanations elicited higher accuracy of
predictions than no-explanation control descriptions but no higher
accuracy than causal explanations, yet counterfactual explanations
elicited greater satisfaction and trust judgments than causal expla-
nations. Study 2 (N=211) found that users were more accurate for
categorically-transformed features compared to continuous ones,
and also replicated the results of Study 1. The findings delineate im-
portant boundary conditions for current and future counterfactual
explanation methods in XAI.
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1 INTRODUCTION
The burgeoning prevalence of automated decision-making in the
public and private sectors has led to increased concerns about the
fairness, transparency, and trustworthiness of these Artificial Intel-
ligence (AI) systems [3, 10]. Automated counterfactual explanations
have emerged as a common strategy to help users understand the
decisions of such systems and address fairness and trust issues
[26, 28]. Such explanations describe how an AI system’s output
decision would have been different, had some of the input features
been different. The typical example of a counterfactual explanation
is one in which a bank customer is refused a loan by an automated
system and on querying the decision is told "if you had asked for
$2k less, you would have received the loan". Counterfactuals are
viewed as a promising solution to the eXplainable AI (XAI) problem
because of their compliance with data protection regulations (e.g.,
EU GDPR [68]), their potential to support algorithmic recourse [27],
and their acknowledged importance in human explanations [7, 54].
However, although there is now a substantial XAI literature report-
ing many diverse counterfactual algorithms, there is a paucity of
good user studies that back the claims made for this explanation
strategy [28].

We do not know precisely how people understand counterfac-
tual explanations of AI decisions, what impact these explanations
have on people’s knowledge of the AI system or domain, and which
aspects of counterfactual methods are psychologically critical to suc-
cessful XAI. For instance, many counterfactual algorithms prioritise
altering "plausible", "actionable", or "causally-important" features
in their generated explanations [25, 55, 68]. However, it has not
been reliably established which of these feature-types (if any) are
important to users. In the present study, we examine a feature-type
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distinction that is arguably fundamental, that between continuous
features and categorical features. Although counterfactual methods
differ in how they compute these feature-types, they have not been
identified as being critically important. Yet, psychological evidence
suggests that people do not tend to construct counterfactuals that
modify continuous features [23].

We also do not know whether counterfactual explanations offer
significant advantages over other long-standing explanation strate-
gies, such as causal rules (e.g., in expert systems [5] and decision
trees [17, 39]). In philosophy [20, 42], it has been argued that causal
and counterfactual reasoning are closely related. Furthermore, psy-
chological evidence has shown that counterfactual thinking plays
a key role in people’s understanding of causality [15, 50]. How-
ever, counterfactual and causal explanations have seldom been
compared to one another in XAI. Here, we explicitly compare these
two explanation strategies, under carefully controlled and matched
conditions, to determine their relative impacts on people’s under-
standing and judgments.

Hence, the present studies examine the effects of categorical
and continuous features in counterfactual and causal explanations
for users of a simulated automated decision-making app that de-
termines drink-driving limits, based on a model’s predictions of
people’s blood alcohol content (BAC). Different groups of users
were given the app’s decisions, with either counterfactual explana-
tions (e.g., "if John had drunk 3 units, he would have been under the
limit"), or causal explanations (e.g., "John was over the limit because
he drank 5 units"), or no-explanation, that is, they were presented
with a re-description of the app’s decision (e.g., "John was over the
limit"). Experiment 1 (N=127) examined the effects of explanations
using categorical features (gender, stomach-fullness) and continu-
ous features (units, duration of drinking, body weight) on people’s
accuracy in predicting the system’s decisions and their subjective
satisfaction and trust in the system. Experiment 2 (N=211) directly
compared the impact of continuous and categorical features, for
counterfactual and causal explanations, using the same measures.

In the next section, we introduce relevant related work on coun-
terfactual and causal explanations (see 2.1), the cognitive differences
between them (see 2.2), and feature-types in XAI systems (see 2.3),
before outlining our experimental paradigm (see 3). We then report
two experiments (see 4 and 5) and discuss the implications of our
findings for different explanation strategies and feature-types and
explanations in XAI (see 6).

2 RELATEDWORK
In the following subsections, we review three key literatures that
provide context for the current work, namely the related work on
(i) counterfactual and causal explanations in XAI, (ii) cognitive
differences between counterfactual and causal explanations, and
(iii) consideration of different feature-types in counterfactual XAI.
As we will see, much of the XAI literature emphasises the role
that explanations play in establishing satisfaction and trust in an
automated decision-maker. Clearly, these subjective self-reported
responses are important and should be explored. However, expla-
nations should also impact people’s understanding of the system,
the task, and the domain [32]. Philosophers and psychologists have
repeatedly argued that true explanations must result in a change in

people’s understanding of the world, events or phenomena [30, 54].
In XAI, this requirement means that good explanations should im-
prove people’s understanding of the AI system, the task domain
and, if required, their performance on some relevant target task
[19, 32]. An explanation is effective, therefore, if people objectively
perform better on a task involving the AI system, for example, by
being faster, more accurate, or by being able to predict what the
system might do next [16, 37, 43, 46, 65]. Another theme in the
current XAI literature is the divergence between people’s objective
understanding of an AI system and their subjective assessments of
it, that is, a lack of correspondence between objective and subjective
measures, and we consider this divergence in the next sections also.

2.1 Counterfactual and Causal Explanation:
Evidence from User Studies

A counterfactual explanation explains an outcome, e.g., that John
is over the blood-alcohol limit to drive, by describing how an al-
ternative outcome would have occurred, had an antecedent event
been different, e.g., John would have been under the limit if he had
drunk 3 units of alcohol. It explains the facts, e.g., that John drank
6 units and was over the limit, by contrasting them with a counter-
factual alternative case with different feature-values and a different
output, e.g., John drank 3 units and was under the limit. In XAI,
counterfactual explanations typically advise a user about how a
different system output would have been achieved by some change
to the input features, e.g., a customer would have been granted a
loan if their credit score had been higher. In contrast, a causal ex-
planation explains an outcome by identifying the antecedent event
that led to it, e.g., John was over the limit because he drank 6 units.
It refers only to the facts and does not propose how changes to the
facts would lead to a different outcome. In this section, we examine
how counterfactual and causal explanations have been used in XAI,
and we review their effects on human users’ understanding of AI
systems.

A recent upsurge in XAI research on counterfactual explanation
has produced ∼125 distinct counterfactual algorithms (for reviews
see [26, 28, 67]). These methods advance different algorithms for
computing counterfactuals, with approaches ranging from opti-
misation [55, 68], to causal models [25], distributional analyses
[9, 22, 33] and the centrality of instances [16, 29, 49, 61]. All of
these techniques claim that the counterfactuals they generate are
"good" explanations for end-users, although they often differ on
how the notion of "goodness" is operationalised, whether by virtue
of their "proximity" to the query [68], "plausibility" [25], "sparsity"
[29] or "diversity" [55]. However, few of these "goodness" claims
have been specifically substantiated in user tests. Indeed, a 2021
review found that just 21% of 117 papers on counterfactual expla-
nation included any form of user-testing, and even fewer (only 7%)
tested specific aspects of a proposed method [28]. This absence
raises the issue that many current XAI counterfactual explanation
techniques lack psychological validity, that is, their explanations
may not concretely impact people’s understanding of the AI system
or its decision, and they may have no practical benefits in real-life
applications [2, 41].

Existing studies tend to assess general questions about the im-
pact of counterfactual explanations on users’ evaluations. Some
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compare people’s performance given counterfactual explanations
to no-explanation controls [16, 43, 46]. A few studies compare coun-
terfactual explanations to other (e.g., example-based) explanation
strategies [65]. Moreover, some studies use objective measures (e.g.,
accuracy of user predictions), whereas others use subjective mea-
sures (e.g., user judgments of trust, satisfaction, preference). These
studies show mixed support for the use of counterfactual explana-
tions in improving user understanding of AI systems. “What-if”
counterfactual explanations improved performance in prediction
and diagnosis tasks relative to no-explanation controls, but notmore
so than other explanation options ("why-not", "how-to" and "why"
explanations) [43]. Visual counterfactual explanations have been
shown to increase classification accuracy relative to no-explanation
controls in a small sample of users [16]. However, it has also been
found that prompting users to reason counterfactually about a de-
cision can impair objective performance. Lage et al. [37] compared
counterfactual tasks, in which users predicted if a system’s rec-
ommendation would change given a perturbation of some input
feature, to simulation tasks, in which users predicted the recom-
mendation based on input features. Counterfactual tasks elicited
longer response times, greater judgments of difficulty, and lower
accuracy than forward simulation. Another study found that people
were less accurate when asked to produce a counterfactual change
for an instance than when asked to predict an outcome from the
features [46]. These findings are consistent with psychological ev-
idence that counterfactuals aid people to reason about past and
future decisions, but in doing so require cognitive effort and re-
sources [6, 47, 48, 59] as we describe later. However, caution needs
to be exercised in drawing conclusions from this small collection
of studies, given their diversity of tasks, domains and experimental
designs, and particularly given their methodological weaknesses,
especially given the lack of controls in some of them, the too few
test items or very small numbers of participants.

Another set of counterfactual XAI studies have focused on
whether counterfactual explanations improve people’s self-reported
trust or satisfaction in the AI system. They have found generally
positive results. Users judge counterfactuals as more appropriate
and fair than example-based [3], demographic-based, and influence-
based explanations [10]. Contrastive explanations were found to
increase self-reported understanding of a system’s decisions [46].
Crucially however, some studies show dissociations between ob-
jective and subjective measures, that is, users subjectively prefer a
certain explanation, but it does not objectively improve their under-
standing [4, 35]. Users shown contrastive rule-based explanations
self-reported better understanding of the system’s decision than no-
explanation controls, however, neither contrastive rule-based nor
contrastive example-based groups differed from a no-explanation
group in predictive accuracy for what the system might do, and
they tended to follow the system’s advice even when incorrect [65].
Thus, studies asking users how well they understand a system’s
decisions or how satisfying they find an explanation, may not ac-
curately reflect the actual impact of an explanation, particularly
given people’s propensity to overestimate their understanding of
complex causal mechanisms [60]. Notably, if an explanation has no
objective impact on understanding but is subjectively preferred by
users, then concerns about its ethical use arise.

In addition to counterfactuals, the present work also considers
the effects of causal explanations on user understanding and judg-
ments in XAI. Causal explanations have a long history in AI, often
cast as decision sets and decision trees (e.g., [5, 21, 63]), and typically
take the form of "IF-THEN" rule statements consisting of a condition,
which if met, leads to a prediction, such as "if the customer’s salary
is under $10k, then do not grant the loan". Recently, concise decision
sets describing local decision-boundaries [39] have been shown to
facilitate faster, more accurate user understanding than complete
rule lists. Many XAI researchers argue that these rule-based ex-
planations are human-interpretable as post-hoc explanations for
opaque models [11, 40, 58], although some have questioned this
claim [44]. Recently, some XAI user studies have examined causal
rules. For instance, Lage et al. [37] report that decision sets elicit
high predictive accuracy, low self-reported difficulty, and quick
response times from end-users. The same study found similar di-
vergence between objective and subjective evaluation measures
to that identified in counterfactual user studies [35, 65]; as tasks
systematically increased the complexity of a system’s causal rules,
so too subjective judgments of difficulty also increased, as did users’
response times; however, little effect of complexity was observed
on task accuracy. The present study compares counterfactual and
causal explanations for AI decisions, examining their effects on
accuracy of understanding as well as on self-reported satisfaction
and trust, and deriving hypotheses from extensive psychological
research on both, to which we now turn.

2.2 Cognitive Differences Between
Counterfactual and Causal Explanations

The present work compares the effects of counterfactual expla-
nations on user understanding to those of causal explanations.
Although few XAI studies have compared these two explanation
methods, there has been considerable interest in philosophy [20, 42],
see also [18], and in psychology [38, 45, 51, 53, 62] in the interde-
pendence between counterfactual and causal reasoning. Reasoning
about a counterfactual alternative, in which an outcome would have
turned out differently if a preceding event had been different, has
been shown to amplify judgments of a causal link between the event
and outcome [50]. People’s understanding of causality often relies
on counterfactual reasoning about different possible outcomes [15].
However, counterfactual and causal reasoning are psychologically
distinct. People tend to construct causal explanations that focus on
strong causes, e.g., a drunk driver swerving into the protagonist’s
car caused the crash, i.e., a cause that is necessary and sufficient for
the outcome to occur; whereas counterfactual explanations tend to
focus on enabling causes, e.g., the crash would have been avoided
if the protagonist had taken a different route, i.e., a cause that is
necessary but not sufficient for the event to come about [6, 47].
When people create or understand a counterfactual such as "if she
had applied for a loan under $5k, it would have been approved" they
mentally envisage two possibilities: the conjecture, she applied for
a loan under $5k and it was approved, and the presupposed facts,
she didn’t apply for a loan under $5k and it wasn’t approved [6] see
also [57]. In contrast, when they understand the causal assertion
"the loan wasn’t approved because she didn’t apply for one under
$5k", they envisage only a single possibility initially, corresponding
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to the specified facts. Accordingly, the richer mental representation
of counterfactuals confers a cognitive benefit, e.g., people make
more inferences from counterfactuals than from factual assertions
[8]. But the cognitive benefits of counterfactuals come at the cost of
requiring more cognitive resources to maintain and update multiple
mental representations. Hence, people tend to spontaneously create
twice as many causal explanations as counterfactual thoughts when
reflecting on an imagined negative event [51]. On the one hand, a
counterfactual explanation for an AI system’s decision will prompt
users to simulate the dual possibilities invoked by comparing the
factual input and output of the AI system to a counterfactual case
with a different input and output, which may prove effective in
improving users’ mental models of an AI system. On the other hand,
a causal explanation will be less cognitively demanding for users,
since it does not require mental simulation of multiple possibilities.
The current experiments follow up such work by comparing coun-
terfactual and causal explanations for matched instances, testing
whether people find counterfactual explanations more helpful than
causal ones, subjectively in self-reports of explanation satisfaction,
and objectively in the accuracy of their understanding of the AI
system.

2.3 Feature-types and Counterfactual
Explanations

The present work also studies the impact of different feature-types
on users’ understanding and evaluation of an AI system.Many coun-
terfactual explanation algorithms prioritise using specific feature-
types in counterfactuals, such as causally-important [25], or action-
able (i.e., within the user’s control [1, 64]) features. For example,
telling a bank customer “if you were to reduce your education level,
you would have been granted the loan” is not viewed as useful since
lowering one’s level of education is not an "actionable" change. Such
ideas about the mutability or actionability of features are intuitively
appealing and easily implemented in counterfactual methods, but
evidence of their psychological impact is less clear-cut. In the only
XAI study that has examined actionable features, it was found that
actionability predicts user satisfaction and (self-reported) under-
standing [34]. However, the authors also highlight that ideas of
feature mutability and actionability were not easy to define and
were highly context-dependent (e.g., increasing one’s salary by
$1,000 might be highly actionable for a high-earning executive, but
entirely non-actionable for someone earning the minimum wage).

Crucially, counterfactual algorithms appear to overlook funda-
mental distinctions in feature-types that directly impact human
understanding. Kahneman & Tversky [24] point out that people
do not spontaneously make small changes to continuous variables
when creating counterfactuals (e.g., they do not say "if only the
driver had driven through the junction two seconds earlier, the
accident could have been avoided"). People may not tend to change
continuous features in counterfactuals, perhaps because they find
them harder to identify or understand. For example, a counterfac-
tual explanation that tells a user, “if your credit score had been
high, your loan application would have been approved" may be
easier to understand than one saying “if your credit score had been
4.6, your loan application would have been approved”. The first
provides a binary distinction, between the categorical features, high

and low, whereas the second provides a specific point on a contin-
uous scale. People find it easier to reason about binary alternates
rather than a contrast class consisting of multiple values [13, 56].
However, counterfactual algorithms do not take into account this
distinction. Some methods suggest meaningless non-integer val-
ues for categorical features (e.g., Race= .5 [68]), whereas others
use one-hot encoding to transform categorical features into con-
tinuous variables [25, 55] or project categorical variables onto an
ordinal feature-space [9, 66]. These methods focus on transforming
categorical features into continuous formats, implicitly assuming
that continuous and categorical features are interchangeable, when
in fact, people may understand explanations based on categorical
and continuous features very differently. In the present studies, we
compare the effects of explanations focusing on continuous and
categorical features on people’s understanding of an AI system’s
decisions. We hypothesise that categorical features will be more
readily understood than continuous features.

2.4 Outline of Paper
In the remainder of this paper, we report two experiments that
compare the impact of counterfactual and causal explanations, and
the impact of explanations based on continuous and categorical
features, on users’ understanding and subjective evaluation of a
simulated AI system designed to predict BAC thresholds. Partici-
pants were shown predictions by the system for different instances,
accompanied by explanations. The explanations were phrased as ei-
ther counterfactual or causal assertions, and they were about either
continuous or categorical features. Participants gained experience
of the system’s predictions and learned about the BAC domain with
the help of the explanations. Then, participants’ understanding of
the system was objectively measured using the accuracy of their
predictions, without feedback or explanations. Finally, users’ sub-
jective evaluations, in the form of explanation satisfaction and trust,
were recorded.

3 EXPERIMENTAL TASK: AN APP THAT
PREDICTS LEGAL DRIVING LIMITS

Participants were presented with alcohol driving-limit decisions
from a simulated automated system application; the application
was presented as designed to predict whether someone was over the
legal BAC limit to drive. The decisions were based on a commonly-
used approximate method, the Widmark equation [70], that uses
five features to assess BAC, with the limit threshold set at 0.08%
alcohol per 100ml of blood. This formula was used to generate a
dataset of instances for normally-distributed values of the feature-
set (N=2000), from which the study’s materials were drawn.

In the experimental task, participants were instructed that they
would test a new application, SafeLimit, designed to inform peo-
ple whether or not they are over the legal limit to drive, based on
five features: units of alcohol consumed by the person, weight (in
kg), duration of drinking period (in minutes), gender (male/female)
and stomach-fullness (full/empty). The experiment consisted of two
phases: a training phase, in which they made predictions and were
given explanations and feedback on their responses, and a testing
phase, in which they made predictions for instances without ex-
planations or feedback. These phases tested whether experience of
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Figure 1: Sample item from the training phase in the Counterfactual condition of Experiment 1. In (a) is an example of a single
trial with the three response options, in (b) is the feedback shown to a participant who chose the correct answer (in this case
“over the limit”), including the explanation, in (c) is the feedback shown to a participant who chose the incorrect answer.

the app’s predictions with/without explanations impacted people’s
knowledge of the application and domain.

In the training phase, participants were shown tabular data for
different individuals on each screen and asked to make a judgment
about whether each individual was under or over the limit on each
screen. Participants selected one of three options: “Over the limit”,
“Under the limit”, or “Don’t know” by clicking the corresponding
on-screen button (see Figure 1a). The order of these options was
randomised, to ensure that participants did not click on the same
button placement each time. After the participant had submitted a
response, theywere shown feedback on the next screen, that is, their
chosen answer was highlighted with a green tick-mark if it was
correct (see Figure 1b), or a red X-mark if it was incorrect (see Figure
1c) and the correct answer was highlighted in green. In addition
to the feedback, participants were also shown an explanation on
this screen, placed above the answer options (see Figure 1b and
Figure 1c). The explanation they were shown depended on the
experimental condition towhich theywere assigned, counterfactual,
causal or no explanation. Figure 1 shows sample materials used in
the counterfactual explanation condition.

The testing phase started after completing the training phase.
Here, participants were shown instances describing different indi-
viduals (see Figure 2) and asked to judge if the individual was over
the legal limit to drive. After submitting each response, no feedback
or explanation was given, and they moved on to the next trial. For

each instance, participants were asked to consider a specific fea-
ture in making their prediction, e.g., “Given this person’s WEIGHT,
please make a judgment about their blood alcohol level.”

The objective measure of performance in the study was accuracy
(i.e., correct predictions made by participants, that is, whether the
participant’s prediction of the AI’s output aligned accurately with
the output that the AI system would actually make). The subjective
measures were explanation satisfaction and trust in the system,
assessed using DARPA’s Explanation Satisfaction and Trust scales
[19], respectively (see appendix A.1 and A.2). Participants were pro-
vided with general information about the experiment at the outset
and they were invited to provide their consent to participate. Partic-
ipants who consented to take part in the experiment read detailed
instructions about the task and completed practice trials for each
phase of the study before commencing. They progressed through
the presented instances in a different randomised order for each
participant, within the training and testing phases. After complet-
ing both phases, they completed the Explanation Satisfaction and
Trust scales, and were debriefed and paid for their time. To ensure
participants included in the analysis had engaged with the task, all
participants completed four attention checks at random intervals
throughout the experiment, and at the end of the session, they were
asked to recall the 5 features used by the application by select-
ing them from a list of 10 options. The task instructions and data
for the experiments are available at https://osf.io/dmvc2/. Ethics
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approval for both studies was granted in advance by University
College Dublin with the reference code LS-E-20-11-Warren-Keane.

Figure 2: Sample item from the testing phase of Experiment 1

4 EXPERIMENT 1
The aim of the experiment was to compare the effect of counterfac-
tual and causal explanations for the SafeLimit application’s deci-
sions to no-explanation controls (which re-described the decision
without explanation). Participants were assigned to one of three
groups (counterfactual, causal, or no-explanation control) and com-
pleted the (i) training phase in which they made predictions and
were given feedback with explanations (explanation groups) or re-
descriptions (control group) and (ii) testing phase where they made
predictions with no feedback or explanations (for all groups). Hence,
any observed differences in accuracy in the testing phase will re-
flect participants’ experience of the explanations or no-explanation
in the training phase, given that this variation was the sole dif-
ference between conditions. Participants were presented with 40
items in each phase, which systematically varied in terms of the
five features used with balanced occurrence (i.e., eight instances for
each feature). Explanation satisfaction and trust in the system were
measured following the training and testing phases. Our primary
predictions were: (i) explanations will improve accuracy, that is,
performance in the testing phase will be more accurate than perfor-
mance in the training phase, (ii) counterfactual explanations will
improve accuracy more than causal explanations, if they are more
informative, (iii) predictions about categorical features will be more
accurate than predictions about continuous features, if people find
the former easier to understand than the latter, and (iv) counterfac-
tual explanations will be judged as more satisfying and trustworthy
than causal explanations, replicating previous studies showing that
they are often subjectively preferred over other explanations.

4.1 Method
4.1.1 Participants and Design. The participants (N=127) were re-
cruited using Prolific (https://www.prolific.co/) and they were
assigned in fixed order to the three between-participant condi-
tions: counterfactual explanation (n=41), causal explanation (n=43)
and no-explanation control (n=43). The participants comprised 80
women, 46 men, and one non-binary person and they were aged
18-74 years (M=33.54, SD=13.15). Participants were pre-screened to
be native English speakers from Ireland, the United Kingdom, the

United States, Australia, Canada and New Zealand, who had not
participated in previous related studies. A further 11 participants
were excluded prior to data analysis, one for giving identical re-
sponses for each trial, and 10 who failed more than one attention
or memory check. The experimental design was a 3 (Explanation:
counterfactual, causal, control) x 2 (Task: training vs testing phase)
x 5 (Feature: units, duration, gender, weight, stomach-fullness) de-
sign, with repeated measures on the latter two variables. Before
testing, the power analysis with G*Power [14] indicated that 126
participants were required to achieve 90% power for amedium-sized
effect with alpha <.05 for two-tailed tests.

4.1.2 Materials and Procedure. Eighty instances were randomly
selected from the 2000-item dataset generated for the BAC domain.
Specifically, the procedure randomly selected an instance (query
case) and incrementally perturbed one of the five feature values
until its BAC value crossed the decision-boundary to create a coun-
terfactual case. If the perturbation was successful, the instance was
selected as a material and its counterfactual was used as the basis
for the explanation shown to the counterfactual group. For example,
if an instance with units=4 crossed the decision-boundary when it
was reduced by one unit (to be under rather than over the limit), the
counterfactual explanation read “If John had drunk 3 units instead
of 4 units, he would have been under the limit”; the matched causal
explanation read “John is over the limit because he drank 4 units”;
and the control group was given a re-description of the outcome
“John is over the limit”. This selection procedure was performed 16
times for each feature, a total of 80 times, with balanced instances
on either side of the decision-boundary (i.e., equal numbers under
and over the limit). Each instance was randomly assigned to one of
two sets of materials, each comprising 40 items, again ensuring a
balanced number of instances. To avoid any material-specific con-
founds, materials presented in the training and testing phases were
counterbalanced, so that half of the participants in each group saw
Set A in the training phase, and Set B in the testing phase, and this
order was reversed for the other half of the participants. After data
collection, t-tests verified that there was no effect of material-set
order. Participants were paid £2.61 for their time. The experiment
took approximately 28 minutes to complete.

4.2 Results
The results show that providing explanations improved the accu-
racy of people’s predictions in the testing phase; participants judged
counterfactual explanations to be more satisfying and trustworthy
than causal explanations, but counterfactual explanations had only
a slightly greater impact than causal explanations on participants’
accuracy in predicting the app’s decisions. Categorical features led
to higher prediction accuracy than continuous features. Partici-
pants’ accuracy on categorical features was markedly higher in the
testing phase than in the training phase, whereas their accuracy on
continuous features remained at similar levels in both phases (an
effect that occurred independently of the explanation type).

4.2.1 User Accuracy. To test the hypotheses, a 3 (Explanation: coun-
terfactual, causal, control) x 2 (Task: training vs testing) x 5 (Feature:
units, duration, gender, weight, stomach-fullness) mixed ANOVA
with repeated measures on the second two factors was conducted
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Figure 3: Task accuracy (proportion of correct responses)
for the three conditions in Experiment 1 for each of the 5
features in the (a) training and (b) testing phases (error bars
show standard error of the mean; the dashed line represents
chance accuracy).

on the proportion of correct answers given by each participant (and
the mean proportions are provided in Figure 3). A significant main
effect was found for Explanation, F (2,124)=5.63, p=.005, 𝜂2𝑝=.083,
and post hoc Tukey HSD tests showed that the Counterfactual
group (M=.636, SD=.08) was more accurate than the Control group
(M=.590, SD=.08), p=.003, d=.22. The Causal group (M=.614, SD=.09)
was not significantly more accurate than the Control group, p=.186;
or the Counterfactual group, p=.245. These results indicate that
providing explanations is better than not providing them, for im-
proving accuracy. They also show, as predicted, that counterfactual
explanations have a greater effect on accuracy than causal expla-
nations or no-explanation controls. Note that these effects were
observed for both phases of the study overall (Explanation did not
interact with Task).

There were also main effects for Task, F (1,124)=32.349, p<.001,
𝜂2𝑝=.207, and for Feature, F (3.945, 489.156)=47.599, p<.001, 𝜂2𝑝=.277,
and Task interacted with Feature, F (4, 496)=7.23, p<.001, 𝜂2𝑝=.055.1

No other effects were significant.2 Each of the significant effects
were further examined in post hoc analyses. The decomposition of

1AHuynh-Feldt correctionwas applied to themain effect of Feature and its interactions.
2No other two-way interactions were reliable, Explanation did not interact with Task,
F (2, 124)=.759, p=.47, nor with Feature, F (7.89, 489.156)=1.14, p=.335, and the three
variables did not interact, F (8, 496)=1.215, p=.288.

the interaction revealed that accuracy improved from the training
to the testing phase for the categorical features (gender, stomach-
fullness), but not for the continuous features (units,weight and dura-
tion). Post hoc pairwise comparisons with a Bonferroni-corrected al-
pha of .002 for 25 comparisons showed that participants made more
correct responses in the testing phase than in the training phase
when considering gender, t(126)=5.626, p<.001, d=.50, and stomach-
fullness, t(126)=4.430, p<.001, d=.39, but not units, t(126)=1.350,
p=.179, weight, t(126)=-1.209, p=.229, or duration, t(126)=.32, p=.75.
The analysis also showed that within each phase of the study, the
categorical features produced higher accuracy than the continu-
ous features, confirming the prediction that people find the former
easier to understand than the latter. In the training phase, accu-
racy for gender was significantly higher than accuracy for units,
t(126)=4.935, p<.001, d=.44,weight, t(126)=6.824, p<.001, d=.61, dura-
tion, t(126)=6.332, p<.001, d=.58, and stomach-fullness, t(126)=5.202,
p<.001, d=.46, the other features did not differ significantly from
each other (p>.05 for all comparisons). In the testing phase, ac-
curacy was higher for gender than for units, t(126)=8.844, p<.001,
d=.78, weight, t(126)=10.824, p<.001, d=.96, duration, t(126)=10.81,
p<.001, d=.96 and stomach-fullness, t(126)=4.986, p<.001, d=.44. Ac-
curacy for stomach-fullnesswas higher than forweight, t(126)=4.943,
p<.001, d=.44, duration, t(126)=4.959, p<.001, d=.44, and units,
t(126)=2.853, p=.005, although the latter was not significant on
the corrected alpha.3

4.2.2 User Accuracy: exploratory analysis. To probe the nature of
the significant effects of explanations further we carried out an
exploratory analysis, that is, an analysis that had not formed part
of our initial hypotheses. It indicated a reliable trend of increasing
accuracy in group scores in the following order: Counterfactual >
Causal > Control, Page’s L(40)=1005.0, p<.001 (the median scores
are provided in Figure 4a).

We carried out a second exploratory analysis, to probe further
the effects of features. It indicated it is the diversity in the range
of feature-values that likely leads to their effects, rather than some
abstract ontological status of the feature. When we rank-ordered
each of the features in terms of the number of unique values present
in the materials, we found that it predicted the observed trend
in accuracy in the testing phase. That is, the rank ordering from
highest-to-lowest diversity – duration (60 unique values) > weight
(36 unique values) > units (4 unique values) > stomach-fullness (2
unique values) = gender (2 unique values) – inversely predicts the
trend in accuracy: duration (M=.549) < weight (M=.557) < units
(M=.615) < stomach-fullness (M=.675) < gender (M=.796); Page’s
L(127)=6256.5, p<.001 (the median scores are provided in Figure
4b).

4.2.3 Subjective Evaluation. Explanation Satisfaction Measure.
A one-way ANOVA was carried out on the summed judgments
for the Explanation Satisfaction scale to examine group differences
in satisfaction levels for the explanations provided (the summed
judgment scores are provided in Figure 5a). Significant differences
between the groups were identified F (2, 126)=6.104, p=.003, 𝜂2𝑝=.09.

3Accuracy for units was significantly higher than weight, t(126)=3.152, p=.002, d=.28
and duration, t(126)=3.539, p=.001, d=.31. Accuracy for weight and duration did not
differ, t(126)=.385, p=.701.
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Figure 4: Task accuracy (proportion of correct responses) for (a) the three explanation conditions in Experiment 1, (b) for
each feature in Experiment 1 (lines within boxes denote medians, x-marks denote means, whiskers represent 1.5 times the
interquartile range, dots represent outliers, and the dashed line represents chance accuracy).

Post hoc Tukey HSD tests showed that participants in the counter-
factual group (M=27.83, SD=6.12) self-reported significantly higher
satisfaction with the explanations than those in the causal group
(M=22.79, SD=6.63), p=.002, d=0.76. The control group (M=25.86,
SD=7.19) did not differ significantly from either the counterfactual
(p=.369) or the causal (p=.087) groups.

Trust Measure. A one-way ANOVA was carried out on the
summed judgments for the Trust Scale to examine group differences
in trust levels for the explanations provided (see Figure 5b). Signifi-
cant differences between the groups were identified F (2, 126)=8.184,
p<.001, 𝜂2𝑝=.117. Post hoc Tukey HSD tests showed that participants
in the counterfactual group (M=26.15, SD=6.14) self-reported signif-
icantly higher trust in the AI system than those in the causal group
(M=20.21, SD=6.27), p<.001, d=.88. The control group (M=23.12,
SD=7.63) did not differ significantly from either the counterfactual
(p=.101) or causal groups (p=.115).

Figure 5: Summed judgment scores for (a) Explanation satis-
faction and (b) Trust in Experiment 1 (minimum score possi-
ble is 8, maximum is 40, error bars represent standard error
of the mean).

4.2.4 Subjective Evaluation: exploratory analysis. We also carried
out an exploratory analysis on the subjective evaluations. For the
explanation satisfaction measure, a reliable trend was identified
when rank-ordering judgments for each item in the order: Coun-
terfactual > Control > Causal, Page’s L(8)=111.0, p<.001, suggesting

that counterfactual explanations were somewhat more satisfying
than non-explanations, and non-explanations were somewhat more
satisfying than causal explanations. People were less satisfied with
causal explanations compared to counterfactual explanations.

For the trust measure, a reliable trend was identified when
rank-ordering judgments for each item in the order: Counterfac-
tual > Control > Causal, Page’s L(8)=112.0, p<.001. Like the sat-
isfaction judgments, these results suggest that counterfactual ex-
planations were judged somewhat more trustworthy than non-
explanations, and non-explanations were somewhat more trust-
worthy than causal explanations. People placed less trust in causal
explanations compared to counterfactual explanations.

4.3 Discussion
Experiment 1 corroborated our primary predictions, showing that (i)
explanations improved accuracy; performance in the testing phase
was more accurate than performance in the training phase, (ii) coun-
terfactual explanations improved accuracy more than causal expla-
nations; users’ prediction accuracy improved when given counter-
factual explanations, relative to causal explanations, which in turn
were more effective than control descriptions, (iii) participants’
predictions about categorical features were more accurate than
their predictions about continuous features, and (iv) users who
were shown counterfactual explanations gave higher subjective
judgments for explanation satisfaction and trust than those who
were shown causal explanations, whereas the judgments of no-
explanation controls lay in-between those of the counterfactual
and causal groups.

4.3.1 Counterfactual and causal explanations. These results show
that counterfactual explanations had a greater impact on people’s
accuracy in understanding an AI system, as well as eliciting higher
satisfaction and trust judgments, significantly higher than causal
explanations, and somewhat higher than non-explanations. The
findings for subjective judgments are consistent with previous find-
ings showing that counterfactual explanations tend to be perceived
positively by users [3, 10, 46], as well as bolstering claims that they
improve user understanding [7, 54]. However, it is worth noting that
users’ accuracy scores do not completely align with their subjective
evaluation scores. The Counterfactual group made more accurate

178



Categorical and Continuous Features in Counterfactual Explanations of AI Systems IUI ’23, March 27–31, 2023, Sydney, NSW, Australia

predictions than the Control no-explanation group, whereas the
Causal group did not; and the trend in accuracy showed that pre-
dictions by the Counterfactual group were more accurate than
those by the Causal group, which were more accurate than those
by the Control no-explanation group. Although participants in the
Causal explanation group were more accurate in predicting the
system’s decisions than the Control group, the Control group gave
more favourable satisfaction and trust judgments than the Causal
group. This highlights the need for caution in analysing users’ self-
reported evaluations of explanations, particularly given that people
tend to overestimate the depth of their understanding of complex
phenomena [60].

It is important to note that the better performance in accuracy,
satisfaction, and trust elicited by counterfactual explanations rel-
ative to causal explanations may be due to the provision of more
information about the relationship between a given feature and
the outcome (i.e., how much that feature must change in order
to alter the system’s prediction), e.g., "if John had drunk 3 units
instead of 4 units, he would have been under the limit”, compared
to the causal explanation, “John is over the limit because he drank
4 units". Although this additional information may be viewed as an
inherent benefit of counterfactual explanation over more factual
explanations [54], such as causal explanations, feature-importance
scores [58] and decision-sets [39], it raises the question of whether
these alternatives could be equally effective as their counterfactual
counterparts if they contained supplementary information about
the decision-boundary. As discussed in section 2.2, if counterfactual
explanations prompt users to represent the factual case as well
as the counterfactual case, it may be the simulation of both pos-
sibilities that aids them in developing a more accurate model of
the underlying AI system, rather than merely the additional con-
trastive information alone. To test this, in the next experiment we
matched the amount of information provided by the counterfactual
and causal explanations. For example, a counterfactual explanation
"if Sarah had weighed 15kg heavier, she would have been under the
limit", and a matched causal explanation, "because Sarah’s weight
was 15kg too light, she was over the limit", provide the same infor-
mation about the relationship between the feature (weight) and the
outcome (being over the limit). The causal explanation now also
provides contrastive information implicitly, as does the counter-
factual explanation. If counterfactual explanations induce users to
consider multiple possibilities, we expect that participants shown
counterfactual explanations will again exhibit higher accuracy in
their predictions of the system’s decisions, compared to causal
explanations and control non-explanations.

4.3.2 Categorical and continuous feature-types in explanation. We
found that users were more accurate in predicting the system’s de-
cisions based on categorical features rather than continuous ones.
While task accuracy increased from the training phase to the testing
phase, this improvement was seen only in accuracy for the categor-
ical features (gender and stomach-fullness), whereas accuracy for
continuous features (units, duration, and weight) remained the same
in both phases. This psychological difference between categorical
and continuous feature-types has been overlooked by current coun-
terfactual algorithms in XAI, which tend to treat continuous and
categorical features as interchangeable (see [69] for our model that

tries to take these findings into account). However, the exact source
of these benefits for categorical features over continuous features is
still unclear. One conjecture is that categorical features have some
intrinsic ontological property that makes them easier for people to
process. Another conjecture is that categorical features are easier to
process because of the lack of diversity in the feature-value-ranges
presented to the people; that is, a continuous feature such as weight
was given 36 different feature-values over presented instances in
the experiment, whereas a categorical feature such as gender was
given only 2 different feature-values in the experiment. If the latter
conjecture true, then converting continuous features into categor-
ical ones with less feature-value diversity (e.g., discretising the
weight feature to appear as heavy/light, that is, to have only 2 dif-
ferent feature-values) should change the lower accuracy observed
for continuous features here. Furthermore, although users appear to
understand categorical features more readily than continuous ones,
it was not possible to test any potential differences in subjective
judgments of satisfaction and trust that may result from continuous
versus categorical features, due to the within-participants design
of the feature-type factor in Experiment 1. In the next experiment,
we examine feature-type as a between-participants factor to enable
us to do so.

5 EXPERIMENT 2
In Experiment 2, we compared the impact, on users’ objective accu-
racy and their subjective self-reported satisfaction and trust, of (i)
mixed features (i.e., categorical and continuous, as presented in Ex-
periment 1) versus categorical features (i.e., all continuous features
converted to categorical ones, alongside the existing categorical
ones) and (ii) counterfactual explanations, causal explanations, and
no-explanation. As in Experiment 1, participants completed (i) a
training phase, (ii) a testing phase during which their accuracy
was measured, and (iii) self-reported judgments of explanation sat-
isfaction and trust. Participants were presented with 16 items in
each phase, which were systematically varied across four of the
features with balanced occurrence (i.e., 4 instances for each feature).
Our predictions were that (i) users will be more accurate when
shown items with only categorical features compared to items with
mixed continuous and categorical features, (ii) users presented with
counterfactual explanations will be more accurate than those pre-
sented with causal explanations or no-explanation controls, and (iii)
counterfactual explanations will elicit higher subjective satisfaction
and trust than causal explanations and controls, i.e., effects from
Experiment 1 will be replicated.

5.1 Method
5.1.1 Participants and Design. The participants (N=211) were sub-
ject to the same pre-screening criteria as Experiment 1, and as-
signed in a fixed order to six groups: mixed-counterfactual explana-
tion (n=34), mixed-causal explanation (n=31), mixed-control (n=37),
categorical-counterfactual explanation (n=41), categorical-causal
explanation (n=34), and categorical-control (n=34). Participants
comprised 100 women, 99 men, three non-binary people, and nine
participants who did not disclose their gender or age. Those par-
ticipants who reported demographic information were aged 18-75
years (M=33.1, SD=11.0). Prior to analysis, 34 participant responses
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were excluded because they failed more than one attention or mem-
ory check. The experimental design was a 3 (Explanation: counter-
factual, causal, control) x 2 (Feature-format: mixed vs categorical)
x 2 (Task: training vs testing phase) design, with repeated mea-
sures on the third variable. A power analysis conducted with the
easypower package for R [52] indicated that 211 participants were
required for 90% power, given a medium effect size with alpha <.05
for two-tailed tests.

5.1.2 Materials & Procedure. Participants were presented with 32
instances (16 of which were unique) drawn from a BAC dataset.
Participants in the mixed feature groups were shown instances with
features in the same format as the participants in Experiment 1, that
is, three continuous features (units,weight, and duration) and two bi-
nary categorical features (gender and stomach-fullness). Participants
in the categorical feature groups were shown the same instances,
but the features of units, weight, and duration were re-coded to be
categorical, so that all five features had binary categorical values.
The continuous features were coded as categorical by generating a
normally-distributed dataset of instances (N=2000) and computing
the upper and lower quartile values for each feature (see appen-
dix B.1). Units, weight, and duration were re-coded as ‘high’/‘low’,
‘heavy’/‘light’, and ‘long’/‘short’ respectively. For example, a case
with the values gender = male, units > 5, weight > 83kg, duration >
106 mins, stomach-fullness = empty was re-coded as gender = male,
units = high, weight = heavy, duration = long, stomach-fullness =
empty. Instances containing any features with a value in the in-
terquartile range were considered ineligible for selection. Sixteen
of the 32 possible combinations of the five categorical features were
selected as instances to present to participants, based on their prox-
imity to the decision-boundary. Each instance was presented twice:
once in the training phase, and once in the testing phase under a
different individual’s name. Eight of the instances were predicted
to be over the limit, and eight were predicted to be under the limit.
In order to ensure each feature was referred to an equal number
of times, participants were asked to consider only four of the five
features (gender, units, weight and stomach-fullness). Each of these
features was referred to four times in the explanations in the train-
ing phase, and four times in the prompts in the testing phase i.e.,
for 16 instances in each phase. The remaining feature of duration
was presented with the other features in each trial, however it was
not referred to in any of the explanations or prompts.

The explanations presented in the training phase referred to a
continuous or categorical change in the features, depending on
the experimental condition. The wording of the counterfactual and
causal explanations was adjusted from Experiment 1 to provide
matched information about how a feature would have to change
to alter the system’s decision (see appendix B.2 for examples). In
the instructions, participants were told how the continuous fea-
tures had been categorised into categorical ones and reminded of
this information before beginning the testing phase. Upon comple-
tion, participants were compensated £1.40. The experiment took
an average time of 20 minutes to complete.

5.2 Results
The results of Experiment 2 show that providing explanations and
presenting features as categorical led to higher user accuracy in pre-
dicting the app’s decisions. Participants presented with instances

involving only categorical features weremore accurate in predicting
the app’s decision based on these features than participants shown
mixed continuous and categorical features. Participants given coun-
terfactual explanations were more accurate compared to the causal
explanation and control groups, regardless of feature-format. Par-
ticipants given control non-explanations gave higher judgments
of satisfaction and trust than those in the explanation conditions
and participants shown mixed features placed more trust in the app
than those shown only categorical features.

Figure 6: Task accuracy for the six conditions in Experiment
2 in the (a) training and (b) testing phase (error bars represent
standard error of the mean, dashed line represents chance
accuracy).

5.2.1 User Accuracy. A 3 (Explanation: counterfactual, causal, con-
trol) x 2 (Feature-format: mixed vs categorical) x 2 (Task: training vs
testing) mixed ANOVA with repeated measures on the third factor
was conducted on the proportion of correct responses given by each
participant (see Figure 6). There was a main effect of Explanation,
F (1, 205)=6.839, p=.001, 𝜂2𝑝=.063, and post hoc Tukey HSD tests in-
dicated that the Counterfactual explanation group (M=.72, SD=.16)
was significantly more accurate than the Control group (M=.64,
SD=.16), p<.001, d=.64, while the Causal group (M=.68, SD=.19) did
not differ significantly from the Counterfactual group, p=.094, or
Control group, p=.211. There was a main effect of Feature-format,
F (1, 205)=21.558, p<.001, 𝜂2𝑝=.095, as the categorical feature group
(M=.71, SD=.17) was significantly more accurate than the mixed
feature group (M=.64, SD=.16), i.e., participants presented with only
categorical features were more accurate than those shown items
involving a mix of continuous and categorical features, regardless
of the explanation they received. There was also a main effect of
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Task, F (2, 205)=193.762, p<.001, 𝜂2𝑝=.486, as participants were more
accurate in the testing phase (M=.76, SD=.16) than the training
phase (M=.60, SD=.13). No other effects were significant.4

5.2.2 User Accuracy: exploratory analysis. Once again, we carried
out an exploratory analysis to examine the effect of explanations
further. It identified a reliable trend in group accuracy scores in
the following order: Counterfactual > Causal > Control, Page’s
L(32)=415.0, p<.001 (the median scores are provided in Figure 7).
These results show that providing explanations increased predic-
tion accuracy compared to not providing them, with a greater effect
of counterfactual explanations on accuracy relative to causal expla-
nations and no-explanation controls.

Figure 7: Task accuracy for the three explanation conditions
in Experiment 2 (lines in boxes denote medians, x-marks
denote means, whiskers show 1.5 times interquartile range,
dots show outliers, dashed line represents chance accuracy).

5.2.3 Subjective Evaluation. Explanation Satisfaction Measure.
A 3 (Explanation: counterfactual, causal, control) x 2 (Feature-
format: mixed vs categorical) ANOVA was performed on the
summed judgments for the Explanation Satisfaction Scale (see Fig-
ure 8a). A main effect of Explanation was found, F (2, 205)=6.17,
p=.003, 𝜂2𝑝=.057, no effect of Feature-format, F (1, 205)=.153, p=.696,
and no interaction between factors, F (2, 205)=1.174, p=.311. Post
hoc Tukey HSD tests indicated that the Control group (M=29.86,
SD=6.54) self-reported higher satisfaction with explanations than
the Counterfactual group (M=26.73, SD=6.85), p=.019, d=.45, and
the Causal group (M=25.90, SD=7.59), p=.004, d=.56. The Counter-
factual group did not differ significantly from the Causal group,
p=.801.

Trust Measure. A 3 (Explanation: counterfactual, causal, con-
trol) x 2 (Feature-format: mixed vs categorical) ANOVA was con-
ducted on summed judgments for the Trust Scale (see Figure 8b). A
main effect of Explanation was identified, F (2, 205)=4.554, p=.012,
𝜂2𝑝=.043, and amain effect of Feature-format, F (1, 205)=5.927, p=.016,
𝜂2𝑝=.028. The two factors did not interact, F (2, 205)=.660, p=.518. Post
hoc Tukey HSD tests showed that participants in the Control group
(M=26.56, SD=6.70) self-reported significantly higher trust in the AI
system than those in the Counterfactual group (M=23.83, SD=7.04),
4The three factors did not interact, F (2, 205)=.165, p=.848, nor did Explanation interact
with Feature-format F (2, 205)=1.061, p=.348, or task, F (2, 205)=.754, p=.472. There was
no interaction between Feature-format and Task, F (1, 205)=1.982, p=.161.

p=.039, d=.41 and Causal group (M=23.18, SD=7.05), p=.011, d=.50.
The counterfactual and causal groups did not differ in judgments of
trust, p=.844. The main effect of Feature-format arises because the
mixed group (M=25.85, SD=6.98) gave higher trust judgments than
the categorical group (M=23.36, SD=6.88), indicating that people
placed more trust in the AI system when shown mixed features
compared to only categorical features.

Figure 8: Summed judgments for (a) Explanation satisfaction
and (b) Trust in Experiment 2 (minimum score possible is 8,
maximum is 40, error bars show standard error of the mean).

5.2.4 Subjective Evaluation: exploratory analysis. In a further ex-
ploratory analysis on the explanation satisfaction measure, a re-
liable trend was identified when rank-ordering judgments for
each item in the order: Control > Counterfactual > Causal, Page’s
L(8)=110.0, p<.001, indicating that no-explanations were more sat-
isfying than counterfactual explanations, and counterfactual expla-
nations were more satisfying than causal explanations. A reliable
trend was also identified for the trust measure when rank-ordering
judgments for each item in the order: Control > Counterfactual >
Causal, Page’s L(8)=111.0, p<.001, indicating that no-explanations
were judged more trustworthy than counterfactual explanations,
and counterfactual explanations were judged more trustworthy
than causal explanations.

5.3 Discussion
Experiment 2 supported two of our predictions, showing that users
of an AI application were more accurate in predicting its decisions
when shown, (i) categorical features only, compared to items that
mix continuous and categorical features, and (ii) counterfactual
explanations compared to causal explanations or no-explanation
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at all. The main effect of task suggests that all participants im-
proved after the training phase, regardless of explanation strategy.
Nonetheless, the main effect of explanation shows that providing
counterfactual explanations had added benefits over causal expla-
nations and no-explanation, and the main effect of feature-format
indicates that presenting all the item’s features in a categorical
format had added impact relative to the other conditions. However,
our third prediction regarding users’ subjective judgments was not
supported: unexpectedly and contrary to the results of the previous
experiment, users judged no-explanation control descriptions more
favourably than counterfactual and causal explanations.

5.3.1 Counterfactual and causal explanations. Experiment 2 repli-
cates the findings of Experiment 1, in that participants given coun-
terfactual explanations were more accurate than those given no-
explanations, and somewhat more accurate than those given causal
explanations. This finding was irrespective of whether the items
being explained involved only categorical features or mixed con-
tinuous and categorical features. As in Experiment 1, participants’
accuracy improved from the training phase to the testing phase,
regardless of the explanations. Strikingly, users shown counterfac-
tual explanations were reliably more accurate than those shown
causal explanations, despite these explanations containing matched
information about the decision-boundary. This result suggests that
counterfactual explanations have additional explanatory benefits,
that are not solely due to providing additional information to the
user.

However, the effects for the subjective measures found in Exper-
iment 1 were not replicated. Instead, the no-explanation controls
showed higher levels of satisfaction and trust than either of the
explanation groups. The trend for satisfaction and trust of Control
> Counterfactual > Causal indicates that counterfactual explana-
tions were evaluated as higher in satisfaction and trust than causal
ones, as found in Experiment 1; however no-explanation control
descriptions were evaluated as higher in satisfaction and trust than
either. Of course in both experiments, the subjective judgments
were made in the between-participants design of the present stud-
ies, that is, participants did not compare counterfactual, causal, and
no-explanation descriptions, they assessed only the information
given in their allocated condition. Participants in the control groups
may have made their subjective judgments relative to their assess-
ment of the SafeLimit app as a whole, rather than evaluating the
system’s explanations. Had our experiments employed a within-
participants design, or enforced a choice between explanation types,
we would not anticipate a control description to be preferred to
counterfactual or causal explanation. The counterfactual and causal
explanations in Experiment 2 were modified to ensure that the
causal explanations contained comparable contrastive information
to the counterfactual ones, and so a possible explanation for the
result is that the no-explanation control descriptions, which merely
restated explicitly the outcome, appeared simpler than the counter-
factual or causal explanations. Irrespective of the exact reasons for
this finding, it is somewhat worrying that those participants with
the poorest understanding of the system (i.e., the control group has
the lowest accuracy scores) gave the most positive judgments of it
(the control group had the highest satisfaction and trust scores).

5.3.2 Categorical and continuous features in explanations. Users
who were presented with items using only categorical features
were more accurate in predicting the system’s decisions than those
shown the same information in a raw, continuous format. These
results confirm our hypothesis that participants understand cat-
egorical features more readily than continuous ones. Moreover,
they indicate that continuous features, transformed into categorical
features (in this case, units, weight and duration) are as easily under-
stood as features that are categorical in their raw form (e.g., gender
and stomach-fullness). In terms of participants’ satisfaction, no dif-
ference between feature-formats emerged, suggesting that users
perceived them to be similarly effective in explanations. However,
a difference in user trust did emerge. Users shown only categor-
ical features reported lower levels of trust in the AI system than
those shown continuous feature-values. This result may align with
a recent study that found that observers of an AI agent ascribed
it more intelligent, higher-order thinking when it gave explana-
tions containing numerical data as opposed to natural language,
even when the figures were not meaningful [12]. Participants pre-
sented with the raw, continuous features may have perceived the
system as more precise, and hence more trustworthy, while in con-
trast, the transformation of continuous features may have been
regarded as less reliable and transparent. This finding also indicates
a further discrepancy between objective and subjective measures;
the participants shown only categorical features were more ac-
curate in predicting the app’s decisions, however, they appeared
to trust the system less than their counterparts who were shown
mixed continuous and categorical features. These results demon-
strate that this divergence in measures occurs not only between
different sorts of explanations (counterfactual and causal) but also
for different feature-formats, again highlighting the importance
of measuring both objective and subjective criteria in any user
evaluations.

6 GENERAL DISCUSSION
The present studies report key findings for XAI on how explana-
tions impact people’s knowledge of an AI system, and how that
understanding changes when different feature-types occur in these
systems. Both experiments showed that counterfactual explana-
tions are effective in improving users’ knowledge of an AI system’s
operation (as measured by predictive accuracy), more effective
than causal explanations and the presentation of decisions without
explanations. However, the subjective judgments of explanation
satisfaction and trust did not align with users’ task accuracy. Sub-
jective judgments were not consistent across the two experiments,
suggesting that such measurements may not be robust or reliable.
Finally, both experiments showed that users understand decisions
and explanations differently when they involve categorical or con-
tinuous features. In the following subsections, we discuss the impli-
cations of these findings with respect to several key issues: (i) the
divergence between objective and subjective measures in XAI user
studies (ii) the role of different feature-types – continuous versus
categorical – in counterfactual algorithms, (iii) the future directions
are suggested by these results.
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6.1 Objective and Subjective Measures of
Counterfactual and Causal Explanations

In both experiments, the counterfactual groups were more accu-
rate than the control groups, and the accuracy of causal groups
lay in between the other two. These findings suggest that coun-
terfactuals help people reason about the causal importance of the
features used in the system’s decisions more effectively than mere
re-descriptions of a decision, and slightly better than causal ex-
planations. These effects emerge even when counterfactual and
causal explanations contain matched information about how the
query instance must change to cross the decision-boundary. This
finding is consistent with evidence that counterfactuals elicit causal
reasoning and enable people to understand causal relations [59, 62],
and provides support for the use of counterfactuals in algorithmic
recourse [26, 68], as they appear to aid user understanding of the
predictions made by the system.

On the other hand, users’ subjective explanation satisfaction and
trust judgments did not correspond to their accuracy results. In Ex-
periment 1, participants shown causal explanations gave the lowest
judgments of satisfaction and trust across the groups, even though
this group was more accurate than the control group. Surprisingly,
in Experiment 2, the control groups, who received re-descriptions of
the system’s decisions and were least accurate in their predictions,
reported the information they were provided with as satisfying and
trustworthy, more so than groups who received explanations. This
divergence may signal issues about the reliability of these particular
satisfaction and trust scales (a point raised in other studies, see e.g.,
[31]). However, the result also highlights the divergences between
objective and subjective evaluations, already noted in other XAI
user studies [4, 37, 65]. Indeed, Kuhl et al. [35, 36] have also recently
reported positive effects of counterfactual explanations on task per-
formance, but failure to find differences in subjective measures of
helpfulness and usability in an abstract domain.

It is of some concern that participants who displayed the poor-
est understanding of the system’s decisions (those in the control
groups) often displayed the highest levels of satisfaction and trust,
suggesting that shallow non-explanations may be enough to elicit
users’ trust and satisfaction without enabling them to learn about
the system’s operation. We suggest that our finding may be another
manifestation of the illusion of explanatory depth, a phenomenon
examined in research on the psychology of explanation that reveals
a human tendency to overestimate one’s causal understanding of
complex phenomena[60]. The illusion can be dispelled by requiring
people to generate their own explanation, or to answer diagnostic
questions about the mechanism, or by providing them with detailed
expert explanations. Hence a possible reason for the dissociation we
have identified, that is, the lack of correspondence between under-
standing as measured by accuracy on the one hand, and subjective
evaluation measures on the other hand, may be that this illusion
of explanatory depth persists for those participants who receive
no explanation, whereas users who are provided with explanations
are prompted to integrate them with their existing mental model
of the system and domain, thus enabling them to become aware of
gaps in their understanding.

Overall, these results indicate that counterfactual explanations
are a valuable tool to aid users in understanding automated systems

and their decisions. Importantly, they also emphasise that where the
objective of XAI is to improve human-machine team performance or
achieve algorithmic recourse, as opposed to justifying an automated
decision, it is crucial to probe user understanding of these decisions,
rather than relying purely on users’ self-reported evaluations.

6.2 Categorical Versus Continuous Features in
Explanation

The current experiments indicate that users find features presented
in a categorical format easier to understand and base predictions on
than features presented in a continuous format. In Experiment 1, we
found that users were more accurate in making predictions based on
categorical features compared to continuous features. Experiment
2 demonstrated that showing people categorically-transformed
features leads to higher accuracy (hence better understanding)
than presenting features as continuous, indicating that this effect
emerges from how features are presented rather than some inherent
ontological property of the feature-type.

The findings have significant implications for counterfactual
algorithms in XAI. Most XAI counterfactual methods (e.g., [25, 55])
transform categorical features into continuous formats, using one-
hot encoding or mapping to ordinal feature-spaces. These methods
are commonly applied to tabular datasets, which have mixtures of
continuous and categorical features, often involving high-stakes
decision-making (e.g., the COMPAS and German Credit datasets,
for recidivism risk assessment and loan approval, respectively).
The current results suggest that where possible, AI explanation
should prioritise categorical features, to help users better under-
stand decisions. However, the results also show that users can
benefit from continuous features that have been transformed into
categorical formats. Thus we expect that counterfactual methods
that perform such transformations will be more effective in terms
of user understanding compared to ones that do not. Recently we
have developed one such method, which has been implemented
and computationally evaluated, showing that it is possible to apply
categorical transformations to counterfactual explanations, without
significantly affecting explanatory coverage or effectiveness of the
algorithm [69]. One consideration in this regard is that categorical
features may impact users’ subjective judgments; simplifying the
features presented to users, may come at some cost of subjective
trust in the system. Notably, the benefits of categorical features
in explanation emerge regardless of explanation type, counterfac-
tual or causal, and so this finding also has implications for XAI in
general, and not solely for contrastive approaches.

6.3 Limitations and Future Directions
The present work emphasises how XAI can benefit from embrac-
ing evidence and methodologies from cognitive psychology. The
findings detailed in this study suggest several possible future lines
of research. First, the categorical features examined here were lim-
ited to binary values. Although these kinds of features occur in
many datasets (e.g., gender, Boolean values), categorical features
can, in theory, have as many potential values as continuous ones.
Moreover, depending on the system, features, user, or task context,
a more fine-grained binning may be more appropriate than the
binary division examined here. Hence, the current work presents a
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clear baseline for the distinction between continuous and categori-
cal features, but further research is necessary to establish whether
there is a limit to the number of categorical values that humans
can keep track of without compromising accuracy (that is, before
the categorical features become as challenging as continuous ones).
The difference in accuracy observed between the different features
suggests that users may be able to monitor up to at least four cate-
gories (given that accuracy for units was higher than that for weight
and duration), but future work should test this hypothesis. Second,
when considering the kinds of features to alter in counterfactual
explanations, methods have focused on properties such as muta-
bility, actionability and plausibility, and users’ understanding of
continuous and categorical features has been assumed to be equal.
One implication of our findings is the possibility that there may
be other fundamental feature distinctions which have yet to be
accounted for by XAI methods. Overall, the findings motivate a
more psychologically-grounded and user-centric approach to XAI,
to design methods that reflect the demonstrated benefits of counter-
factual explanations and categorical features, as well as to evaluate
the cognitive effects of explanations on users’ understanding of AI
systems.
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A SUBJECTIVE JUDGMENT SCALES
A.1 Explanation Satisfaction Scale

Table 1: Explanation Satisfaction Scale

Explanation Satisfaction Scale Items

1. From the explanation, I understand how the app works.
2. The explanation of how the app works is satisfying.
3. The explanation of how the app works has sufficient detail.
4. This explanation of how the app works seems complete.
5. This explanation of how the app tells me how to use it.
6. This explanation of how the app works is useful to my goals.
7. This explanation of the app shows me how accurate the app is.
8. This explanation lets me judge when I should trust and not

trust the app.

A.2 Trust Scale

Table 2: Trust Scale

Trust Scale Items

1. I am confident in the app. I feel that it works well.
2. The outputs of the app are very predictable.
3. The app is very reliable. I can count on it to be correct all the

time.
4. I feel safe that when I rely on the app I will get the right answers.
5. The app is efficient in that it works very quickly.
6. I am wary of the app. (reverse scored)
7. The app can perform the task better than a novice human user.
8. I like using the system for decision making.

B MATERIALS
B.1 Lower and upper quartile values for

continuous features

Table 3: Lower and upper quartile values for continuous
features

Feature Lower quartile value Upper quartile value

Units 4 5
Weight 69kg 83kg
Duration 79 mins 106 mins
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B.2 Example explanations: Experiment 2

Table 4: Examples of counterfactual explanations in Experiment 2

Feature Mixed features Categorical features

Units If Richard had drunk 3 units more, If Richard had drunk more units,
he would have been over the limit. he would have been over the limit.

Weight If Samantha’s weight had been 50kg lighter, If Samantha’s weight had been lighter,
she would have been over the limit. she would have been over the limit.

Gender If Jenny’s gender had been male, If Jenny’s gender had been male,
she would have been under the limit. she would have been under the limit.

Stomach-fullness If Kevin’s stomach had been fuller, If Kevin’s stomach had been fuller,
he would have been under the limit. he would have been under the limit.

Table 5: Examples of causal explanations in Experiment 2

Feature Mixed features Categorical features

Units Because Richard drank 3 units too few, Because Richard drank too few units,
he was under the limit. he was under the limit.

Weight Because Samantha’s weight was 50kg too heavy, Because Samantha’s weight was too heavy,
she was under the limit. she was under the limit.

Gender Because Jenny’s gender was female, Because Jenny’s gender was female,
she was over the limit. she was over the limit.

Stomach-fullness Because Kevin’s stomach was too empty, Because Kevin’s stomach was too empty,
he was over the limit. he was over the limit.

Table 6: Examples of control descriptions in Experiment 2

Feature Mixed features Categorical features

Units Richard was under the limit. Richard was under the limit.

Weight Samantha was under the limit. Samantha was under the limit.

Gender Jenny was over the limit. Jenny was over the limit.

Stomach-fullness Kevin was over the limit. Kevin was over the limit.
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